BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
-
Updated
Jan 27, 2026 - Python
BoxMOT: Pluggable SOTA multi-object tracking modules modules for segmentation, object detection and pose estimation models
Trackers gives you clean, modular re-implementations of leading multi-object tracking algorithms released under the permissive Apache 2.0 license. You combine them with any detection model you already use.
This repository is based on shouxieai/tensorRT_Pro, with adjustments to support YOLOv8.
The project can achieve FCWS, LDWS, and LKAS functions solely using only visual sensors. using YOLOv5 / YOLOv5-lite / YOLOv6 / YOLOv7 / YOLOv8 / YOLOv9 / EfficientDet and Ultra-Fast-Lane-Detection-v2 .
分别使用OpenCV、ONNXRuntime部署YOLOX+ByteTrack目标跟踪,包含C++和Python两个版本的程序
C++ implementation of ByteTrack that does not include an object detection algorithm.
基于TensorRT的C++高性能推理库,Yolov10, YoloPv2,Yolov5/7/X/8,RT-DETR,单目标跟踪OSTrack、LightTrack。
Real-Time Face Recognition use SCRFD, ArcFace, ByteTrack and Similarity Measure
Based on tensorrt v8.0+, deploy detect, pose, segment, tracking of YOLOv8 with C++ and python api.
Анализ трафика на круговом движении с использованием компьютерного зрения
Integration of YOLOv9 with ByteTracker
Multi-thread tracking of YOLOv5 and ByteTrack implemented by C++, accelerated by TensorRT. YOLOv5 和 ByteTrack 的多线程追踪 C++ 实现, 使用 TensorRT 进行推理加速
Tracking-by-Detection形式のMOT(Multi Object Tracking)について、 DetectionとTrackingの処理を分離して寄せ集めたフレームワーク(Tracking-by-Detection method MOT(Multi Object Tracking) is a framework that separates the processing of Detection and Tracking.)
A general-purpose real-time streaming media and deep learning inference acceleration framework, supporting H264, H265, AAC, MP4, FLV, RTSP, RTMP, and YOLO.实时流媒体及深度学习推理加速通用处理框架,支持H264、H265、AAC、MP4、FLV、RTSP、RTMP、YOLO。
ByteTrack-Eigen is a C++ implementation of the ByteTrack object tracking method, leveraging the Eigen library for high-performance matrix and vector operations.
Packaged version of the ByteTrack repository
Car tracking and car counter implemented with YOLOX, ByteTrack and Pytorch.
Add a description, image, and links to the bytetrack topic page so that developers can more easily learn about it.
To associate your repository with the bytetrack topic, visit your repo's landing page and select "manage topics."